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Abstract: In this paper, a novel statistical model is proposed for retinal optical coherence
tomography (OCT) images. According to the layered structure of the retina, a mixture of six
Weibull distributions is proposed to describe the main statistical features of OCT images. We
apply Weibull distribution to establish a more comprehensive model but with fewer parameters
that has better goodness of fit (GoF) than previous models. Our new model also takes care of
features such as asymmetry and heavy-tailed nature of the intensity distribution of retinal OCT
data. In order to test the effectiveness of this new model, we apply it to improve the low quality of
the OCT images. For this purpose, the spatially constrained Gaussian mixture model (SCGMM)
is implemented. Since SCGMM is designed for data with Gaussian distribution, we convert our
Weibull mixture model to a Gaussian mixture model using histogram matching before applying
SCGMM. The denoising results illustrate the remarkable performance in terms of the contrast to
noise ratio (CNR) and texture preservation (TP) compared to other peer methods. In another test
to evaluate the efficiency of our proposed model, the parameters and GoF criteria are considered
as a feature vector for support vector machine (SVM) to classify the healthy retinal OCT images
from pigment epithelial detachment (PED) disease. The confusion matrix demonstrates the
impact of the proposed model in our preliminary study on the OCT classification problem.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nowadays enormous datasets in different fields cause difficulty in their processing or interpretation.
Hence, many data science experts are looking for a suitable model and pattern to take the
advantages to specify the characteristics of each data category as particularly and uniquely [1,2].
So, modeling can be considered as the main core of many signal/image processing tasks because
choosing different models lead to different strategies for data analysis. Particularly in medical
image analysis which prior information about the properties of the organs under imaging is
available, modeling shows its importance more. According to nature and noise effect, stochastic
models are generally suggested in these images [3–6].

Optical Coherence Tomography (OCT) has appeared as the most promising ocular imaging
technique that provides high-resolution, cross-sectional, and microstructure visualizing of the
retina tissue [7,8]. It is applied to detect and manage more retinal diseases in the early stages
[9,10]. Like other coherent systems, the OCT images have a multiplicative noise called speckle
that dramatically degrades their quality as grainy appearance [8,11]. Here, a novel tailored
statistical model for retinal OCT images has been proposed and its performance is surveyed in
noise reduction application.

Until now several statistical distributions have been suggested for retinal structure modeling in
OCT images and used in various processing applications.
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The first investigation can be assigned to Grzywacz et al. that introduced the stretched
exponential distribution for the homogenous rectangular regions or parallel regions on retinal
layers. The modulation of parameters was served to detect Diabetic Retinopathy (DR). The
dependence of parameters was defined as a position function and the spikes in the place of blots
were observed in the DR data. However, the parameters were steady within the retinal layers of
healthy data [12].

The Generalized Extreme Value (GEV) and Gaussian distributions were suggested to model
seven layers of the retina. These models were exploited to build a synthetic OCT dataset [13].

Amini et al. defined a symmetric Normal Laplace Mixture (NLM) model, the convolution
of Normal and Laplace distribution, to enhance the contrast of OCT images. It was handled
matching the NLM to the Gaussian Mixture Model (GMM) using Gaussianization Transform
(GT) [14]. In another study of the researchers, the GT was combined with Spatially Constrained
Gaussian Mixture Model (SCGMM) algorithm to reduce the noise of retinal OCT images [15].
In [16], the suggested statistical model in [14] was modified to the asymmetric version due to
the histogram of retinal layers’ intensities and was called, Asymmetric Normal Laplace Mixture
(ANLM) distribution. The denoising results indicated the increase of Contrast to Noise Ratio
(CNR) compared to the symmetric model [17].

Jesus et al. described a statistical model for corneal OCT speckle in Region of Interests
(ROIs) to evaluate the properties of microstructure in vivo. The generalized Gamma distribution
was defined as the distribution of corneal OCT intensities and its parameters have statistically
demonstrated significant differences for short and age-related corneal changes [18].

Dubose et al. [19] took into account the segmentation problem of OCT retina layers utilizing
the Cramer-Rao Lower Bounds (CRLBs). The authors defined the intensity distribution of each
retinal layer as K-family distribution to derive the CRLBs.

Recently, Samieinasab et al. [20] noted a horizontal dependency between neighbor pixels of
retinal OCT images at specific distances modeled by a multivariate asymmetric Bessel K Form
(BKF). Finally, the result of denoising has been reported by the combination of gaussianization
and SCGMM. On the other hand, statistical modeling can also be applied in the transform domain.
In the following, we would review them for OCT modeling.

Cauchy distribution has been suggested to model wavelet coefficients of the retinal OCT
images. The distribution has been converted to Gaussian by applying histogram matching,
and the noiseless coefficients have been recovered by Minimum Mean Square Error(MMSE)
estimator [21]. Also, two recent literatures were reported on statistical modeling of retinal OCT
images in transform domain [22,23]. Ghaderi et al. revealed the scale mixture model for the
group of similar nonlocal patches of OCT image in the sparse domain. The sparse coefficients
have been considered as the product of a random vector and a positive scale variable, which
are modeled by Laplace and GEV distributions, respectively. The efficiency has been surveyed
in denoising and obtained the high resolution OCT images captured by Bioptigen cooperation
[22]. In another paper, Amini et al. extended their previous works to a multivariate mixture
NL in the dual-tree-complex wavelet transform (DTCWT) domain. The researchers’ innovation
compared to their previous studies was to propose a multivariate model and gaussianization in
the sparse domain. All above mentioned reviewed studies are summarized in Table 1 which is
comprised the name of the statistical model, type of OCT device, the domain of the modeling,
and application of modeling in the mentioned papers.

Furthermore, some other studies modeled the speckle noise of OCT images by Rayleigh
[24], negative exponential [25], and gamma distribution [26]. With this in mind, we undertook
this study to propose a more comprehensive model but with fewer parameters that has a better
Goodness of Fit (GoF) than previous models as well as considering features such as asymmetry
and heavy-tailed of the intensity distribution of retinal OCT data. Finally, to evaluate the
performance of the proposed model, it is applied to reduce the noise from the retinal OCT
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Table 1. Summary of proposed statistical Distributions for retinal OCT images Modeling

Proposed model OCT device Process Domain Application Ref.

Stretched Exponential RTVue-100 FD- OCT Spatial Detection of DR Grzywacz,2010

Normal +GEV — Spatial synthetic dataset Kulkarni,2011

Mixture of NL
Topcon 3-D

OCT-
1000/Cirrus

HD-OCT

Spatial Contrast enhancement Amini,2016

Spatial Denoising Amini,2017

Sparse Denoising Amini,2020

K-Family Bioptigen Spatial

CRLB calcu-
lation

for the OCT layer
segmenta-

tion problem Dubose,2017

Mixture of ANL Topcon 3-D OCT-1000 Spatial Denoising Jorjandi,2019

Asymmetric BKF

Topcon 3-D
OCT-1000/

Heidel-
berg/Bioptigen Spatial Denoising Samieinasab,2020

Scale mixture model Bioptigen Sparse
Super-

resolution/Denoising Ghaderi,2020

images. In addition, a feasibility study to illustrate the effect of this model in OCT classification
is provided.

The paper is organized as follows. Section II dedicates to the proposed model and its application
on our dataset denoising. The result of GoF and noise reduction are reported in Section III.
Finally, the discussion and conclusion are presented in Section IV and V, respectively.

2. Method

2.1. Dataset

In this study, two datasets are used that introduced in [27,28] and available in [29]. The first
dataset was obtained from Topcon 3D OCT-1000 imaging system at the Ophthalmology Dept. of
Feiz Hospital, Isfahan, Iran. Thirteen 3-D macular (spectral domain) SD-OCT images collected
from eyes without pathology were included in this dataset. The x, y, z scale of the collected
volumes is 650 × 512 × 128 voxels, 7 mm × 3.125 mm×3.125 mm, voxel size 13.67 µm × 4.81 µm
× 24.41 µm. We have randomly selected 10 B-scans from each volume so we have totally130
B-Scans which the GoF of candidate distributions are compared on them. Also, the results of
denoising are reported on 60 randomly selected B-scans from different volumes. It should be
noted that 50 healthy data from this dataset is also selected for classification application. The
second dataset contains six 3D OCT data that has recorded from the same device and with the
same characteristics. They were diagnosed to have retinal Pigment Epithelial Detachment (PED).
This dataset is used to survey the ability of the proposed model to classify healthy data from
abnormal ones. Hence, 50 B-scans with pathological symptoms are selected from this dataset.

2.2. Statistical modeling

To provide a statistical model for OCT images, at first a logarithm operator is used to convert the
speckle noise to an additive Gaussian noise [30, 31].

2.2.1. Retinal layer modeling

To improve the modeling of a retinal OCT image, we have to find a suitable distribution for each
layer that provides an appropriate insight into the special structure. To this end, the eleven retinal
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layers in OCT images were manually segmented by an expert and their normalized histograms
were plotted as illustrated in Fig. 1.

The most important observed features were the asymmetry and heavy-tailed nature of data
distribution. Among the existing distributions, our goal is to present a model with less complexity
and parameters that can be well fitted to OCT data.

In this regard, based on the data structure, different distributions were investigated that two-
parameter Weibull distribution can better address the mentioned properties than other candidate
distributions. The probability distribution function (pdf) of a Weibull random variable is as

Fig. 1. A sample B-scan of retinal OCT with displaying the manual segmentation of the
twelve boundaries as well as their nomination and the normalized histogram of each layer.
The 11 layers are numbered from ILM to the last RPE complex, respectively. Heavy-tail and
asymmetry nature of data distribution are marked as curved red line and vertical dashed red
line in each graph, respectively. The x-axis and y-axis are the range of intensity values of
pixels and the normalized histogram of these intensities, respectively.
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follow [32,33].

fweibull(x;α, β) =
⎧⎪⎪⎨⎪⎪⎩

β
α

(︁ x
α

)︁β−1

0, x<0
e−(

x
α )

β

, x ≥ 0 (1)

where α, β are parameters of scale and shape, respectively and x denotes the pixel intensity in
each B-scan. The advantages are the comprehensiveness, i.e., changing of the values of Weibull
parameters leads to a range of well-known distributions as special cases such as exponential
(β = 1) and Rayleigh (β = 2,α =

√
2σ). The proposed pdf has the ability to model the features

of data (asymmetry and heavy-tailed properties). This is compared with Gamma, symmetric and
asymmetric Normal Laplace, Generalized Gaussian Distribution (GGD), and GEV pdfs that have
been used in the previous studies. The visual and numerical results of GoF demonstrated the
ability of Weibull distribution in capturing the main statistical properties of each retinal layer of
OCT images in comparison to other mentioned distributions. In the following, we introduce a
statistical retinal OCT image model based on Weibull distribution.

2.2.2. Retinal OCT image modeling

Since retina has several various cellular layers, we suggest a mixture distribution [34–37] to
model the retinal OCT images. The number of mixture components can in the simplest case,
be equivalent to the total eleven anatomic layers of retina. However, these layers are located
in different geometric positions, some of them have similar statistical characteristics and can
be described with an identical pdf. Due to the one by one (alternate) changing of retinal
layer’s intensities, we have selected 6 components as nearly optimal value for the number of
components. Since the Weibull pdf has a significant GoF for each layer, it was considered as a
tailored distribution of each component in the mixture model. Therefore, the mixture of Weibull
distribution with different values of parameters in each component is chosen in our proposed
model of retinal OCT images.

The proposed mixture model is formulated as

g(x) =
I∑︂

i=1
wif (x;αi, βi) (2)

where f (x;αi, βi) = fweibull(x;αi, βi) as in (1), wi are non-negative weights with
∑︁I

i=1 wi = 1.
αi>0, βi>0, i = 1, . . . , I are the parameters of the Weibull pdf. In our experiments we have
used I = 6 in model Eq. (2). In total, the parameter sets α = (α1, . . . ,αI), β = (β1, . . . , βI) and
w = (w1, . . . ., wI) have to be estimated from the observed data xj, j = 1, . . . , N, where in our
case N is the number of pixels in an image. The accurate estimation of these parameter sets
plays an important role for the GoF results of the mixture model and for the performance of the
processing tasks.

Due to incomplete data, we employ the Expectation Maximization (EM) [38,39] algorithm to
estimate the model parameters. The EM works iteratively. We start with an initial estimate α(0),
β(0), w(0) according to our observations from statistical behavior of OCT layers. At the (k+1)-th
iteration step of the EM algorithm, we proceed as follows. See Appendix I for more details.

First, we compute the auxiliary variables

r(k)l (xj) :=
wl

(k) f (xj;αl
(k), βl(k))∑︁I

i=1 wi(k)f (xj;αi(k), βi(k))
(3)

for j = 1, . . . , N and l = 1, . . . , I, (expectation step). In the second step (Maximization step), we
update the parameter sets α(k), β(k), w(k) as follows,

wl
(k+1) =

∑︁N
j=1 r(k)l (xj)

N
(4)
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αl
(k+1) = (

∑︁N
j=1 xj

βl
(k)
·r(k)l (xj)∑︁N

j=1 r(k)l (xj)
)

1
/β

(k)
l (5)

β
(k+1)
l = −

∑︁N
j=1 r(k)l (xj)∑︁N

j=1 r(k)l (xj) · ln( xj

α
(k+1)
l

)[1 − (
xj

α
(k+1)
l

)
β
(k)
l ]

(6)

for l = 1, . . . , I. The iteration is repeated until we achieve |α(k+1) − α(k) | ≤ ε, |β(k+1) − β(k) | ≤ ε
and |w(k+1) − w(k) | ≤ ε. Instead of the given formulas in Eqs. (3)–(6), we can also re-compute
the auxiliary variables using the latest estimates. For example, after having computed w(k+1)

i we
would have

rl(xj; w(k+1),α(k), β(k)) =
w(k+1)

l f (xj;α(k)l , β(k)l )∑︁I
i=1 w(k+1)

i f (xj;α(k)i , β(k)i )
(7)

and r(k)l (xj) can be replaced by rl(xj, w(k+1),α(k), β(k)) in Eq. (5). Similarly, r(k)l (xj) can be replaced
by the updated rl(xj, w(k+1),α(k+1), β(k)) in Eq. (6). Moreover, the estimate for β(k+1) can be
improved by solving the nonlinear equations

1
βl

N∑︂
j=1

r(k)l (xj) +

N∑︂
j=1

r(k)l (xj) · ln

(︄
xj

α
(k)
l

)︄ ⎡⎢⎢⎢⎢⎣1 −

(︄
xj

α
(k)
l

)︄βl⎤⎥⎥⎥⎥⎦ = 0 (8)

directly, where again, r(k)l (xj) and, α(k)l can be replaced by the updates rl(xj, w(k+1),α(k+1), β(k))
and α(k+1)

l , respectively. In our numerical experiments, we have solved Eq. (8) iteratively by
choosing appropriate initial values. Most benefit of our proposed mixture model compared to
the one introduced in [14,17] is related to the form of Eqs. (5)-(6). Here, we computed these
parameters in the explicit formulas using the numerical methods and fixed the non-convergence
problem of parameters that the impacts are illustrated in the result section. The proposed mixture
model is compared with NLMM, ANLMM and, GMM using GoF tests and visual assessment
which shows the significant superiority of the proposed model. After finding the suitable model
for OCT data, its performance is investigated in denoising application.

2.3. OCT image denoising

As mentioned before, speckle noise has greatly reduced the quality of OCT images, hence several
articles have surveyed on the noise reduction of these images [40–44]. Because of the effect of
denoising in the main steps of OCT image processing such as segmentation or abnormalities
detection, we aim to provide an efficient method of noise reduction using the MAP estimator
based on the proposed mixture model. For this purpose, we selected the SCGMM algorithm
which is a well-known denoising algorithm based on Gaussian assumption. So, we first convert
the Weibull mixture model (WMM) to the Gaussian mixture model and then apply the SCGMM
algorithm.

2.3.1. Gaussianization

Converting non-Gaussian data to Gaussian type is considered in multiple processing applications
[45–52]. Here, Gaussianization is performed using the histogram matching which transforms an
image so that its histogram matches to a specified histogram. Here, the Cumulative Distribution
Function (CDF) of the Weibull model is equivalent with the CDF of Gaussian distribution
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according to the following equation,

FW (xW ) = FG(xG)

1 − e−
(︂xW/αi

)︂βi

=
1
2
[1 + erf(

xG − µiG

σiG
√

2
)] (9)

The Gaussian random variable xG is derived in terms of the Weibull random variable xW , and
Weibull and Gaussian parameters {µiG,σiG} as

xG = µiG +
√

2σiG(erfinv(1 − 2e−
(︂xW/αi

)︂βi

) (10)

where erfinv is the inverse of error function, erf(x) = 2√
π

x
∫
0

e−t2dt. The Gaussian parameters,

{µiG,σiG}, are calculated in terms of Weibull parameters as

µiG = αiΓ (1 + 1/βi) (11)

σiG = αi

√︃
[Γ

(︂
1 + 2/βi

)︂
−

(︂
Γ

(︂
1 + 1/βi

)︂)︂2
] (12)

where Γ is gamma function [53].
In this way, each Weibull component in mixture model is converted to a Gaussian component.

Finally, all Gaussian components are combined using weighted summation proposed in [54] with
weights wifi∑︁m

i=1 wifi
. So, the final formula for producing the enhanced OCT image with Gaussian

mixture model is
x̂ =

∑︁6
i=1 wixiGfi(x)

/︂∑︁6
i=1 wifi(x) (13)

where xiG is the ith gaussianized component and fi(.) denotes the Weibull distribution using the
parameters of ith component. Finally, the exponential operator is used to return the image into
the main domain due to use of the logarithm operator at the beginning of the study.

2.3.2. SCGMM

The SCGMM algorithm [55] is a patch-based method [56–59] in which the image is divided into
a number of overlapping patches. Then the number of exemplar patches are uniformly chosen
in the image, and similar patches are selected using K-Nearest Neighbors algorithm for each
exemplar and form a cluster. It is assumed that each cluster has a Gaussian distribution with mean
vector and specific covariance matrix. Therefore, the image would follow a Gaussian mixture
model. To calculate these areas as well as to estimate the Gaussian parameters (mean vector and
correlation matrix), a two-step algorithm is used, the first step of which is the clustering step and
the second step is noise reduction (Fig. 2 shows the main steps of SCGMM).

Finally, the steps of denoising based on Weibull mixture model are summarized in Algorithm I.



Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5477

Fig. 2. The steps of SCGMM algorithm for image denoising

3. Results

In the two next subsections, the results of the study are reported. Subsection A is related to
the GoF of the proposed model as visual and numerical measurements. In Subsection B the
application of the proposed method in denoising of retinal OCT images is investigated.

3.1. Goodness of fit

Two numerical measurements were calculated to show how well the various above-mentioned
statistical models (i.e. GEV, NL, ANL, Gamma, GGD and Weibull) fit into the intensity
distribution of retina layers and B-scans. Chi square examines the difference between the
observation and expected values according to the following equation:

χ
2 =

B∑︂
i = 1

(qi - pi)
2

qi
(14)

where pi and qi point out to data distribution and the statistical model, respectively. B is
the number of bins for the histogram. Another numerical measurement is Kullback-Leibler
Divergence (KLD) which is called relative entropy and measures the discrepancy between two
probability distributions. So, it can serve as a GoF test.

DKL(P||Q) =
B∑︂

i=1
piln

pi

qi
(15)

The smaller value of the criteria indicates the less discrepancy. In this study, they were used
to compare six distributions to model the retina layers as well as four mixture models applied
to model the whole OCT B-scan. Table 2–4 and Fig. 3–4 are related to the quantitative and
qualitative evaluations of the results, respectively. From these results we can conclude that
WMM has the lowest value of the quantitative criteria and it is demonstrated more remarkable
superiority than other models in the modeling of retinal OCT images.

3.2. Denoising of OCT images

The results of the proposed method on denoising application were evaluated by three numerical
criteria called CNR, Texture Preservation (TP), and Edge Preservation (EP). They were calculated
in the chosen regions of interest (ROI) on the B-scans.
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Fig. 3. (a) comparison of the goodness of fit between proposed model, symmetric NL (NL),
GEV, Gamma, GGD and asymmetric NL (ANL) in eleven retinal layers of OCT. The x-axis
and y-axis are the range of intensity values of pixels and the normalized histogram of these
intensities, respectively. (b) logarithm of intensity distribution to survey the goodness of
fit in more details and tails between proposed model, symmetric NL (NL), GEV, Gamma,
GGD and asymmetric NL (ANL) in eleven retina layers of OCT. The x-axis is same to the
(a) and y-axis denotes the logarithm value of intensity distribution of (a).
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Fig. 4. (a) Comparison the goodness of fit between the proposed mixture model (WMM),
symmetric NL mixture model (NLMM), Gaussian Mixture Model (GMM), and Asymmetric
NL Mixture Model (ANLMM) for a sample B-scan. The x-axis and y-axis are the range
of intensity values of B-scan’s pixels and the normalized histogram of B-scan intensities,
respectively. (b) Logarithmic intensity distribution of the sample B-scan to survey the
goodness of fit in more details (specially in tails). The x-axis is the range of intensity values
of B-scan’s pixels and y-axis denotes the logarithm value of B-scan’s intensity distribution
of (a).

Table 2. The mean of Chi-Square values in 130 B-scans to compare goodness of fit for 6 pdfs
which are fitted to each retina layer

Layers Gamma NL GEV GGD ANL Weibull

1st 0.0101 0.0090 0.0065 0.0045 0.0034 0.0019
2nd 0.0082 0.0071 0.0064 0.0035 0.0031 0.0016
3rd 0.0099 0.0091 0.0062 0.0044 0.0037 0.0016
4th 0.0070 0.0068 0.0043 0.0044 0.0033 0.0015
5th 0.0073 0.0070 0.0035 0.0041 0.0031 0.0014
6th 0.0042 0.0048 0.0033 0.0104 0.0048 0.0023
7th 0.0025 0.0026 0.0032 0.0068 0.0037 0.0063

8th 0.0064 0.0057 0.0029 0.0043 0.0034 0.0010
9th 0.0102 0.0096 0.0044 0.0054 0.0052 0.0014
10th 0.0118 0.0121 0.0061 0.0059 0.0078 0.0014
11th 0.0079 0.0074 0.0027 0.0048 0.0034 0.0011
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Table 3. The mean of KLD values in 130 B-Scans to compare goodness of fit for 6 pdfs which are
fitted to each retina layer

Layers Gamma NL GEV GGD ANL Weibull

1st 0.1882 0.1711 0.0930 0.2973 0.0509 0.0284
2nd 0.1074 0.1054 0.0663 0.1534 0.0331 0.0202
3rd 0.1680 0.1692 0.0839 0.2678 0.0673 0.0215
4th 0.1046 0.1141 0.0497 0.2060 0.0428 0.0197
5th 0.1360 0.1417 0.0457 0.2518 0.0512 0.0198
6th 0.0821 0.0993 0.0503 0.1965 0.0798 0.0257
7th 0.0516 0.0694 0.0462 0.2375 0.0783 0.0952

8th 0.1357 0.1314 0.0450 0.1704 0.0556 0.0169
9th 0.1514 0.1430 0.0479 0.1866 0.0642 0.0233
10th 0.1562 0.1841 0.0596 0.1846 0.0842 0.0225
11th 0.1882 0.1711 0.0930 0.2973 0.0509 0.0284

CNR measures the contrast between the pixels of m-th ROI and background (noisy region) as
given by following definition.

CNR = 10 log
µmROI−µbackground√︂
σ2

mROI + σ
2
background

(16)

where µmROI , σ2
mROI denote the mean and variance of m-th ROI chosen in the intra-layers and the

µbackground, σ2
background are related to the noisy region on the image (vitreous). It is obvious if the

m-th region has a high mean and less standard deviation, it will make a high CNR. So, the region
with high texture (large σ2) calculated mistakenly the contrast low. Hence the next criterion (TP)
is computed to consider this property in the denoising algorithms and show the preservation of
texture after denoising. It is between 0 and 1, and is close to 0 if the texture is become so flatten.
The texture regions, layers area, are favor to calculate the TP based on equation in [60].

The last indicator, EP, was calculated to display the maintaining of edges after applying the
noise reduction method. EP ranges are similar to TP and the related equation in [60] calculates
the correlation of the edge in the denoised and noisy image over the ROIs. The numerical
denoising results were reported in Table 5. Also, the quality of the denoising method was shown
on a sample image in Fig. 5. From these results we can conclude that our proposed denoising
method (WMM-GT-SCGMM) provided the images with high CNR and TP compared to the
other methods, i.e. SCGMM, NLMM-GT-SCGMM and, ANLMM-GT-SCGMM.

Table 4. The mean value of Chi-Square values and KLD
metrics in 130 B-Scans to compare goodness of fit for mixture

models

Criterion NLMM GMM ANLMM WMM

Chi-Square 0.0050 0.0025 0.0018 0.0015
KLD 0.0365 0.0204 0.0224 0.0115

Also, the computational time of the aforementioned denoising methods has been calculated
for a sample 271×512 OCT image using a 2.40 GHz Intel Core i7 CPU and reported in Table 6.
Our method has a less computational time than ANLMM-GT-SCGMM method however it needs
more computational time than SCGMM and NLGTSCGMM. This is due to the more accurate
parameter estimation method which leads to better results on Goodness-of-Fit. Furthermore,
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Fig. 5. Comparison of denosing results in a retinal Bscan.(a) original image (b) SCGMM
(c) NLMM-GT-SCGMM (d)ANLMM-GT-SCGMM (e) WMM-GT-SCGMM.

Table 5. The mean of the denoising criteria on 60 B-Scans

Method CNR TP EP

Original image 8.52 1.00 1.00

SCGMM 11.45 0.79 0.98

NLMM-GT-SCGMM 11.54 0.61 0.92

ANLMM-GT-SCGMM 14.71 0.75 0.87

WMM-GT-SCGMM 14.87 0.81 0.91
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our denoising results are also better than other competitive methods. Therefore, this additional
processing time is justified, especially for offline applications like denoising.

Table 6. The comparison of computational time of the denoising methods

SCGMM NLMM-GT-SCGMM ANLMM-GT-SCGMM WMM-GT-SCGMM

402 sec. 564 sec. 880 sec. 713 sec.

4. Discussion

In this study, a new statistical mixture model has been addressed for retinal OCT images in the
spatial domain. For this purpose, we first explored a suitable model for each retinal layer using
2-parameter Weibull distribution. It is more compatible regarding the intensity distribution of
each layer (excluded the 7th layer) than other candidate distributions like Gamma, GEV, NL,
ANL, and GGD. Regarding the 7th layer, none of the previously examined distributions fitted
well because it is a very thin layer and it is difficult to propose a mixture state for it. The
proposed Weibull model with few parameters and computational complexity, is able to model the
asymmetry and heavy-tailed nature of the intensity distribution of the layers as well as possible,
therefore the mixture of them has been selected for modeling of retinal OCT images. This mixture
model is composed of 6 components of Weibull distribution. In addition to aforementioned
advantages of the proposed model, a robust estimation of WMM’s parameters has been provided
by EM algorithm due to the closed form of equations and convergence of parameters. Eventually,
WMM was compared to three other mixture models, GMM, NLMM, and ANLMM. It had more
remarkable superiority than the other candidate mixture models in terms of both qualitative
and quantitative criteria. In addition, the efficiency of the proposed model was investigated in
noise reduction. For this purpose, SCGMM algorithm was used to decrease the noise. The
proposed algorithm, WMM-GT-SCGMM, has demonstrated better CNR and TP compared to
other examined denoising methods. Therefore, it seems that the proposed method can be used
as a suitable preprocessing step for future operations such as diagnosis from texture analysis.
Although most previous modeling studies on OCT images have been purposed for noise reduction,
some researchers have used modeling to diagnose disease. Therefore, in this study a preliminary
study was conducted to classify normal and abnormal data (PED dataset) using the proposed
model.

In order to differentiate between normal and abnormal datasets, the region of retina from
the first to the last boundary (ILM-RPE) was considered which segmented automatically using
method in [28]. Figure 6 illustrated an OCT image with the pathological symptoms as well as
extracted ILM and RPE boundaries.

Fig. 6. Separating the ILM and RPE borders on the retinal OCT image with pathological
symptoms in red and blue, respectively.
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The proposed mixture model was fitted to the intensity distribution associated with the
pixels of ILM-RPE region and the parameters and GoF criteria values {α1, . . . ,α6, β1, . . . , β6,
w1, . . . , w6, χ2, Dkl} were extracted as feature vectors of 50 healthy B-scans from 5 subjects and
50 B-scans with pathological symptoms from 5 subjects and then given to a linear SVM classifier
as input vector. In order to reduce the effect of correlation which is related to selected B-scans
from same subject in train and test phases, the classifier was repeatedly trained and tested on
ten different selections of subjects’ combination so that 80 percent of subjects were selected for
train step and remained 20 percent for test step. Eventually, the average of results of accuracy,
precision, recall and F1-score are reported in Table 7.

Table 7. the performance of linear SVM classifier for
classification of healthy and PED disease in OCT images.

Accuracy Precision Recall F1-score

88.5% 91.1% 88.5% 86.8%

The obtained results of classification procedure show that a simple classifier can result in an
acceptable performance of distinguishing between healthy data from patients which illustrate the
ability of the proposed Weibull mixture model in classification of OCT data.

5. Conclusion

Modeling is considered as an important and notable topic in medical imaging, so that the
more specific and precise model achieves the ultimate purpose of image processing tasks, i.e.,
discrimination of healthy from abnormal data. Hence, in this study the Weibull mixture statistical
model was addressed for retinal OCT images that despite of less complexity and parameters, was
considerably more consistent with dataset than previous ones, and is due to the well GoF. Also,
the problem of EM algorithm that were directly solved using a numerical method and GoF results
illustrated the remarkable effect.

In addition to address the statistical model for retinal OCT images, its efficiency has also
been investigated for noise reduction and classification. The denoising results illustrated the
proficiency of proposed method (WMM-GT-SCGMM) to improve the CNR while preserving
the texture. In the initial study to utilize the proposed model in classification, the parameters
and criteria of GoF as a feature vector achieved the promising results in the machine learning
problem. Therefore, the proposed model can be taken into account as a way to discriminate
the healthy from unhealthy data. In future work, adding more specific features, such as the
geometry of disease symptoms as well as more data volumes, would allow for using sophisticated
classification methods such as deep learning networks and discrimination of more diseases.

Appendix I

Here we shortly explain the EM algorithm for iterative calculation of the parameters of the Weibull
Mixture Model g(x; w,α, β) =

∑︁I
i=1 wif (x,αi, βi) considered in Eq. (2) for I=6 with f (x;αi, βi) =

fWeibull(x;αi, βi), and with the unknown parameters α = (α1, . . . ,αI), β = (β1, . . . , βI), and
w = (w1, . . . , wI) and the side condition

∑︁I
i=1 wi = 1. For given observed data xj, j = 1, . . . , N,

(in our case, N is the number of pixels in an image) we aim at estimating all wi, αi, βi, i = 1, . . . , I.
Assuming that the realizations xj are independent and identically distributed, the maximum

likelihood estimation gives us

(ŵ, α̂, β̂) = arg max
w,α,β

LN(w,α, β) s.t.
∑︂I

i=1
wi = 1 (17)

with the log-likelihood function LN(w,α, β) = log(
∏︁N

j=1 g(xj; w,α, β)) =
∑︁N

j=1 log
(︂∑︁I

i=1 wif (xj,αi, βi)
)︂
.
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Since this maximization leads to a nonlinear optimization problem, we use the EM algorithm
which is an iterative alternating maximization approach. We start with an initial set of
parameters as w(0) = (0.13, 0.17, 0.1, 0.26, 0.04, 0.3), α(0) = (3, 3.5, 4, 4.5, 5, 5.5) and β(0) =
(21, 22, 23, 24, 40, 26), and iteratively compute the parameter sets w(k),α(k) and β(k), where in
each step, two parameter sets stay to be fixed while the remaining one is optimized.

In the (k+1)-th iteration step, we calculate w(k+1) by approximating

w(k+1) = arg max
w

∑︂N

j=1
log

(︂∑︂I

i=1
wif (xj;αi

(k), βi(k))
)︂

, s.t.
∑︂I

i=1
wi = 1. (18)

The constraint gives for the last weight wI = 1 −
∑︁I−1

i=1 wi. Taking the derivatives with regard
to wl, l = 1, . . . , I − 1, we find the necessary conditions

∂
∂wl

LN(w,α(k), β(k)) = ∂
∂wl

∑︁N
j=1 log

(︂∑︁I
i=1 wif (xj;αi

(k), βi(k))
)︂

=
∑︁N

j=1
1∑︁I

i=1 wif (xj ;α(k)
i ,β(k)

i )
( ∂
∂wl

(
∑︁I

i=1 wif (xj;α(k)i , β(k)i )))

=
∑︁N

j=1
1∑︁I

i=1 wif (xj ;α(k)
i ,β(k)

i )
(f (xj;α(k)l , β(k)l ) − f (xj;α(k)I , β(k)I )) = 0

(19)

where we have used in the last line that ∂wI
∂wl
= −1. We set

rl(xj, w,α, β) :=
wlf (xj;αl, βl)∑︁I

i=1 wif (xj;αi, βi)
(20)

for l = 1, . . . , I, and j = 1, . . . , N, and observe that
∑︁I

l=1 rl(xj, w,α, β) = 1 for all j = 1, . . . , N.
Then we can conclude from Eq. (19) that for l = 1, . . . , I − 1∑︂N

j=1

rl(xj, w,α(k), β(k))
wl

−
∑︂N

j=1

rI(xj, w,α(k), β(k))
wI

= 0, (21)

i.e., with λ :=
∑︁N

j=1
rI (xj ,w,α(k),β(k))

wI
,

λwl =
∑︂N

j=1
rl(xj, w,α(k), β(k)), l = 1, . . . , I. (22)

Taking the sum over all l in the last equation, we obtain from the side condition for the weights

λ = λ
(︂∑︂I

l=1
wl

)︂
=

∑︂I

l=1

∑︂N

j=1
rl(xj, w,α(k), β(k)) =

∑︂N

j=1

(︂∑︂I

l=1
rl(xj, w,α(k), β(k))

)︂
= N.

(23)
Using the previous iteration w(k) instead of w in this sum in Eq. (22), we get the new estimate

w(k+1)
l =

1
N

∑︂N

j=1
rl(xj, w(k),α(k), β(k)). (24)

Next, we calculate α(k+1)
i , i = 1, . . . , I, by considering the derivative of the log-likelihood

function, where w(k+1) and β(k) stay to be fixed. We find for the Weibull density function f
∂

∂α
f (x;α, β) =

∂

∂α

(︃
βxβ−1

αβ
e−(

x
α )

β
)︃

= f (x;α, β)
β

α

(︃(︂ x
α

)︂β
− 1

)︃ .
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Thus, we obtain for l = 1, . . . , I the necessary conditions

∂
∂αl

LN(w(k+1),α, β(k)) =
∑︁N

j=1
1∑︁I

i=1 w(k+1)
i f (xj ;αi,β(k)

i )
w(k+1)

l
∂
∂αl

f (xj;αl, β(k)l ) =∑︁N
j=1

w(k+1)
l f (xj ;αl,β(k)

l )∑︁I
i=1 w(k+1)

i f (xj ;αi,β(k)
i )

(
β
(k)
l
α (

(︂
xj
α

)︂β(k)
l
− 1)) =

β
(k)
l
α

∑︁N
j=1 rl(xj, w(k+1),α, β(k))(

(︂
xj
α

)︂β(k)
l
− 1) = 0.

(25)

Again, we replace rl(xj, w(k+1),α, β(k)) by rl(xj, w(k+1),α(k), β(k)) in the last sum and find∑︂N

j=1
xβ

(k)
l

j rl(xj, w(k+1),α(k), β(k)) = αβ
(k)
l

∑︂N

j=1
rl(xj, w(k+1),α(k), β(k)). (26)

This leads to the new estimates

α
(k+1)
l =

⎛⎜⎝
∑︁N

j=1 xj
β
(k)
l rl(xj, w(k+1),α(k), β(k))∑︁N

j=1 rl(xj, w(k+1),α(k), β(k))
⎞⎟⎠
1
/β

(k)
l

(27)

for l = 1, . . . , I.
Finally, we calculate β(k+1)

i for i = 1, . . . , I by considering the derivative of the log-likelihood
function, where the parameter sets w(k+1) and α(k+1) stay to be fixed. From

∂

∂β
f (x;α, β) =

∂

∂β

(︃
β

α

xβ−1

αβ−1 e−(
x
α )

β
)︃

= f (x;α, β)
(︃
1
β
+ ln

(︂ x
α

)︂ [︃
1 −

(︂ x
α

)︂β]︃ )︃ (28)

for the Weibull density function, we find

∂
∂βl
= LN(w(k+1),α(k+1), β) =∑︁N

j=1
1∑︁I

i=1 wi(k+1)f (xj ;α(k+1)
i ,βi)

w(k+1)
l

∂
∂βl

f (xj;α(k+1)
l , βl) =∑︁N

j=1
w(k+1)

l f (xj ;α(k+1)
l ,βl)∑︁I

i=1 w(k+1)
i f (xj ;α(k+1)

i ,βi)

(︄
1
βl
+ ln

(︃
xj

α
(k+1)
l

)︃ [︄
1 −

(︃
xj

α
(k+1)
l

)︃βl
]︄)︄
=

∑︁N
j=1 rl(xj, w(k+1),α(k+1), β)

(︄
1
βl
+ ln

(︃
xj

α
(k+1)
l

)︃ [︄
1 −

(︃
xj

α
(k+1)
l

)︃βl
]︄)︄
= 0.

(29)

Again, we simplify the calculation be replacing rl(xj, w(k+1),α(k+1), β) by rl(xj, w(k+1),α(k+1), β(k))
and obtain

1
βl

∑︂N

j=1
rl(xj, w(k+1),α(k+1), β(k)) = −

∑︂N

j=1
rl(xj, w(k+1),α(k+1), β(k)) ln

(︄
xj

α
(k+1)
l

)︄ ⎡⎢⎢⎢⎢⎣1 −

(︄
xj

α
(k+1)
l

)︄βl⎤⎥⎥⎥⎥⎦
(30)

Finally, replacing βl by β(k)l on the right-hand side of the last equation, we arrive at the new
estimate

β
(k+1)
l = −

∑︁N
j=1 rl(xj, w(k+1),α(k+1), β(k))

∑︁N
j=1 rl(xj, w(k+1),α(k+1), β(k)) ln

(︃
xj

α
(k+1)
l

)︃ ⎡⎢⎢⎢⎢⎣1 −

(︃
xj

α
(k+1)
l

)︃β(k)
l
⎤⎥⎥⎥⎥⎦

. (31)
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Observe that in the EM algorithm, one usually computes

r(k)l (xj) := rl(xj, w(k),α(k), β(k)) :=
w(k)

l f (xj,α(k)l , β(k)l )∑︁I
i=1 w(k)

i f (xj,α(k)i , β(k)i )
(32)

in the so-called expectation step and just uses this approximation instead of the improved function
values rl(xj, w(k+1),α(k), β(k)) in Eq. (27) or rl(xj, w(k+1),α(k+1), β(k)) in Eq. (31).
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